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IN DEDICATION TO THE LATE PROFESSOR OLIVIER KAHN FOR HIS PIONEERING CONTRIBUTIONS TO THE FIELD OF MOLECULAR MAGNETISM
We resume here a fundamental aspect concerning magnetic
anisotropy and show with some examples how it is possible to
rationalize it. The results are obtained within the framework of
a simple angular overlap approach. The application of this model
to idealized systems, real monomer molecules, and clusters be-
having as single-molecule magnets is described, showing how
even within a simple ligand 5eld approach it is possible to get
some clues on how to control the magnetic anisotropy. Finally,
we focus our analysis on the calculation of fourth-order anisot-
ropy, which has been shown to be of fundamental importance in
determining the quantum tunneling e4ects in single-molecule
magnets. ( 2001 Academic Press

Key Words: magnetic molecular materials; single molecule
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Magnetic molecular materials are a clear indication of the
role played by clever design for introducing expected prop-
erties in the compounds obtained through chemical tech-
niques (1). The development of the "eld has indeed been
made possible by the availability of simple models that
could be used by synthetic chemists in deciding whether to
use one metal ion or another, or a bridging ligand rather
than another, in order to induce ferro- or antiferro-magnetic
coupling in the material. In this sense the role of the Kahn
model (2), which translated in the molecular orbital-
oriented language of the 1980s the Goodenough}Kanamori
rules (3}5), is of fundamental importance. More recently it
has also become possible to quantitatively calculate the
coupling constants using DFT approaches (6}8), with an
accuracy that only a few years ago was unthinkable. There-
fore it may be safely stated that the control of the sign of the
magnetic interaction between the building blocks of mo-
1To whom correspondence should be addressed.
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lecular materials is a solved problem, at least at the isotropic
level.

The control of the sign of the magnetic interaction is
however not su$cient if the magnetic properties of the
materials must be e$ciently designed. In fact the other
important aspect that must be taken into consideration is
magnetic anisotropy. This is well known to a!ect important
properties like the hysteresis cycle (9), thus determining
whether a material must be considered as a soft or a hard
magnet. In recent years an attempt has been made to intro-
duce large anisotropy in molecular materials, and hard
magnets have been obtained (10, 11). It may be easily pre-
dicted that in the next few years these aspects will be more
and more taken into consideration. This is particularly true
for the "nite size magnetic molecules that show slow relax-
ation of the magnetization at low temperature (12}17). For
these materials, which are currently indicated as single-
molecule magnets, SMM (18), the introduction of a large
magnetic anisotropy of the easy axis type is a prerequisite.
Further it is also necessary to control the transverse
anisotropy if quantum tunneling e!ects must be observed
(19, 20). Therefore it is necessary to make available simple
rules that help the synthetic chemist to develop suitable
strategies for introducing the appropriate anisotropy in the
molecules.

The theoretical background for rationalizing the mag-
netic anisotropy is well developed, even if in this "eld DFT
calculations have not yet been pushed to the required level
of sophistication. However ligand "eld models have long
been used to describe the low-symmetry properties of para-
magnetic species (21), and they can provide an excellent
basis for the description of the magnetic anisotropy of
molecular magnets. We wish to resume here a fundamental
aspect concerning magnetic anisotropy and show with some
examples how it is possible to rationalize it. We will focus on
single-molecule magnets, because they have the advantage
of the "nite size, which makes the understanding of the
details easier, but the same considerations apply also to the
in"nite arrays of molecular magnets.
3
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TABLE 1
Explicit Form of Stevens Operators up to Fourth Order
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2 In the following we will refer essentially to octahedral coordination for
the sake of simplicity.

SINGLE-ION ANISOTROPY

The contribution of a single building block of the SMM
to the global anisotropy of the cluster is the single-ion
anisotropy. A system may show anisotropy both in the way
it responds to an external "eld (Zeeman e!ect) and by
making some directions preferable even in the absence of an
external "eld (zero "eld splitting). Both these situations can
occur if an orbital contribution is present in the ground
state. It should however be considered that*with the ex-
ceptions of the ions that have an orbitally degenerate
ground state of T type*orbital degeneracy will be removed
by Jahn-Teller distortions (22).2 One may then assume in
"rst approximation that the ground state does not possess
orbital contribution. At this level of approximation the
system is isotropic, because it is only orbital components
that can feel di!erences between di!erent orientations. The
anisotropy is introduced in the system by spin}orbit coup-
ling that admixes excited states into the ground one. This
phenomenon can be described by the Hamiltonian
H"jL ' S, where j is the spin}orbit coupling within a given
Russell}Saunders multiplet (21). It is related to the
spin}orbit coupling constant of the ion, f, by the relation
j"$f/2S, where the plus sign applies to con"guration
dn with 14n44 and the minus sign to 64n49. For
high-spin d5 ions no orbital degeneracy is introduced at this
level of approximation.

The e!ect of the spin}orbit coupling is obviously depend-
ing on the magnitude of the coupling constant j and on the
energy di!erence between the ground state and the admixed
one. As j is small for constituent atoms of organic radicals,
the magnetic anisotropy is small in these systems, while it is
much larger for transition metal ions (especially for the
second and third rows) and lanthanides, which are indeed
well known to possess a large anisotropy.

The term zero "eld splitting identi"es the splitting of
states belonging to the same S multiplet and di!erent
M

S
values, which leads to a preferential axis (or plane) for

the orientation of the magnetization of the molecule. This
kind of anisotropy can be described by a series expansion in
terms of magnetic multipoles, most appropriately expressed
through the following Hamiltonian (23, 24).

H"+
k,q

Bq
k
Oq

k
, [1]

where the operators Oq
k
, the so-called Stevens operator

equivalents, are de"ned in Table 1 and the Bq
k

coe$cients
must be determined from experiment. The term correspond-
ing to k"2, which describes the e!ect of the quadrupolar
interaction, can be written also as

H2"S 'D ' S, [2]

where D is a symmetric traceless tensor that can also be
explicitly rewritten as

H2"D[S2
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For cubic symmetry D"E"0. For axial symmetry
E"0 and if D'0 the anisotropy is of the easy-plane type
while if D(0 it is of the easy-axis type. Indeed, the number
of terms to be retained in [1] depends both on the spin value
and on the symmetry of the center. Only terms with k42S
will be present; this leads to the conclusion that terms with
k"4, describing hexadecupolar interactions, are present
only for S52 while for k"6 to be present S53 is neces-
sary: this is only the case of rare-earths and actinides ions.
Concerning the symmetry, for a system with S52 in tetrag-
onal symmetry only k"0 and 4 are needed, for trigonal
symmetry only k"0 and 3, while for orthorhombic sym-
metry only 0, 2, and 4. It should be noted here that the
O0

k
operators describe a purely axial anisotropy and does

not mix states with di!erent M
S

values, while the other
terms of Eq. [1] introduce some degree of transverse anisot-
ropy, coupling states di!ering in M

S
by $q.

MAGNETIC ANISOTROPY IN POLYNUCLEAR
COMPOUNDS

In a system where two or more ions with single-ion
anisotropy are interacting one must sum all the single-ion
contributions:
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In [4] only the second-order terms have been considered for
the sake of simplicity. However, in polynuclear complexes
an additional term is needed, describing the pairwise inter-
action between di!erent spins:

+
i:j

S
i
D

ij
S
j
. [5]

The D
ij

tensors may have two di!erent origins, namely
through-space and through-bond (25). The former contribu-
tion can be easily calculated using the point dipolar approx-
imation, i.e., assuming that the spins are localized on
isolated centers, and that the separation between di!erent
centers is large compared to the spatial extension of the
magnet dipoles. This approximation is in general good for
polynuclear metal ion complexes characterized by low
covalency, while it breaks down for polyradicals. The ap-
propriate form of the tensor is
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where g1 and g2 are the g tensors of centers 1 and 2,
respectively, and R is the unitary vector parallel to the line
connecting the two centers. For a pair of spins the dipolar
interactions tends to align them parallel to each other,
giving rise to easy-axis-type anisotropy, with the axis paral-
lel to R.

The through-bond component arises from spin}orbit
coupling mixing of excited states into the ground state.
To evaluate this term it is customary to use the so-called
Moriya approximation (26), which estimates the Dij tensors
through the relation DijJ(*g/g

e
)2J, where *g is the di!er-

ence g!g
e
, g

e
is the free electron value, and J is the

coupling constant. The main drawback is that J refers to the
coupling between the ground states on the two centers,
while in the Moriya approximation the coupling between
one center in the ground state and the other center in the
excited state should be used. Experimental results showed
that in many cases the Moriya approximation may provide
even the wrong sign (25). In general it must be expected that
for centers with g+g

e
(like organic radicals and S-ion like

MnII, FeIII, GdIII) Dij+0.
Provided that the total spin is a good quantum number,

i.e., strong exchange limit is achieved, one can then describe
the global anisotropy of the system as:

H"S 'D ' S. [7]

In this assumption,

D"+
i

dS
i
D

i
#+

i:j

dS
ij
D

ij
. [8]
Here, the D
ij
's are the dipolar tensors which, in "rst approx-

imation, can be calculated treating the magnetic centers as
point dipoles: the approximation is valid if the distance
between the dipoles is large compared to their extension.

Following [8] the single-ion contribution to the magnetic
anisotropy of a polynuclear compound can be calculated as
a weighted sum of individual contribution if the nature of
the total spin state is known. It is important to stress that
Eq. [8] is a tensorial one, which means that the principal
directions of the various tensors must be taken into account.

A relation relying on the same approach describes the
dependence of the global g value on the individual ones:

g
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i
. [9]

Once the individual, intermediate, and total spin states are
de"nite, the cS

i
, dS

i
, and dS

ij
coe$cients are readily calculated

by projecting the individual spins on the total spin (25). The
value of the coe$cients can be calculated with recurrent
formulas; a computer program for performing these calcu-
lations is available from the authors on request.

SAMPLE CALCULATION OF SINGLE-ION ANISOTROPY
THROUGH THE ANGULAR OVERLAP MODEL

The angular overlap model (27, 28) is a ligand "eld ap-
proach that is particularly appealing as it allows the use of
parameters directly related to the p- and n-bonding ability
of the ligands, which may be easily controlled by the syn-
thetic chemist. Moreover, it is possible to use the real coord-
ination geometry around the metal ion site, thus including
e!ects due to the low symmetry of the ligand "eld (29). This
was applied in the past to the rationalization of spectro-
scopic, magnetic, and EPR properties of complexes contain-
ing Kramers ions such as CuII and CoII in low-symmetry
environments (30, 31).

Recently a more general procedure for calculating the
spin Hamiltonian parameters (g and zero "eld splitting
terms up to fourth order) has been developed (32). The
program calculates the ligand "eld spin}orbit Hamiltonian,
considering all the states as originating from a given
dn con"guration, and then compares, through a "tting pro-
cedure, the obtained energy levels with those resulting from
the solution of an appropriate spin Hamiltonian.

It is clear that this could be a very powerful tool to
rationalize the anisotropy of metal ions to develop suitable
strategies for introducing the appropriate anisotropy in the
molecules and thus to get single-molecule magnet behavior
at higher temperatures. The starting point is obviously that
of getting some clues for the control of the magnetic anisot-
ropy in simple molecules. We will present in the following
some sample calculations*whose results are summarized
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in Table 2*on both real and model systems that are of
interest as constituent of single molecule magnets, contain-
ing FeIII and MnIII. In particular, as both of these ions have
S52, their description involves the use of fourth-order
terms of the spin Hamiltonian, whose calculation will be
presented here. This is a very important point, as it has been
clearly shown that Oq

4
terms with q"2,4 are of fundamental

importance in promoting the quantum tunneling of the
magnetization in some single molecule magnets (33, 34).

Fe(III) MONONUCLEAR COMPLEXES

FeIII is a 6S ion: nevertheless the combined e!ect of
spin}orbit coupling and structural distortion is well
known to give rise to appreciable zero "eld splitting in
coordination complexes of this ion (35). We performed
some test calculation assuming two kinds of distortion
from octahedral geometry in an intermediate ligand "eld
strength (Dq"1460 cm~1).

Assuming the quite commonly encountered trigonal
distortion, we found that a variation of h (Fig. 1) by 53
with respect to octahedral geometry (for which
TAB
Summary of the Spin Hamiltonian Parameters Calculated for

Ionsa Distortion
Lig
par

Mn(III) Tetragonal
elongation

Dq(ax)"
Dq(eq)"
2en/ep"

Mn(III) Tetragonal
compression

Dq(ax)"
Dq(eq)"
2en/ep"

Fe(III) Tetragonal
elongation

Dq(ax)"
Dq(eq)"
2en/ep"

Fe(III) Tetragonal
compression

Dq(ax)"
Dq(eq)"
2en/ep"

Fe(III) Trigonal
elongation

Dq"1
2en/ep"
h"49.

Fe(III) Trigonal
compression

Dq"1
2en/ep"
h"59.

Note. Further sample calculations may be found in Ref. (32).
aThe following electronic parameters were used. MnIII: f"315 cm~

C"3260 cm~1.
h"54.733) leads to D"0.383 cm~1 for compression
and D"!0.313 cm~1 for elongation. Conversely, as-
suming a tetragonal distortion, with a 10% variation
of Dq between axial and equatorial ligands, leads to
D"!0.282 cm~1 for compression and D"0.308 cm~1
for elongation.

The behavior of fourth-order terms with respect to
these two distortions deserves some comment. In particu-
lar the D

3h
symmetry of the trigonal distorted octahedron

leads to a zero value of the B4
4

term and to a nonzero
value of the B3

4
term. Both B3

4
and B0

4
are negative, and

their absolute value seems not to depend much on the
direction of the distortion. For tetragonal distortion the
symmetry zeroes the B3

4
term and leads to a nonzero

value of the B4
4
. It must to be noted that, in contrast

to what happens for trigonal distortion, in this case both
the B0

4
and B4

4
terms are positive for elongation and

compression.
However the point that is probably of much interest in

the perspective of designing new SMM is that several
calculations showed that the combination of di!erent
distortions, and then of the presence of a resulting
LE 2
Di4erent Ions and Distortions on Model Systems Using AOM

and "eld
ameters

Calculated spin
hamiltonian parameters
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FIG. 1. Scheme of trigonal distortion. The parameter that describes the
distortion is the angle between the two arrows (h in the text).
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low-symmetry (i.e., nonregular) distortion, lead to
a much smaller value of the anisotropy.

In recent years a relatively large number of clusters
containing FeIII}diketonate units bridged by alkoxo-
groups, which possess interesting magnetic properties
that have been carefully determined by several tech-
niques (HF-EPR, high-"eld magnetization studies,
torque magnetometry), has been synthesized (14, 36}41).
Interestingly a series of diketonate complexes of FeIII was
fully characterized in terms of spectroscopic parameters
by Fatta and Lintvedt in 1971 (42), thus making an
analysis in term of AOM feasible. As a "rst step the
validity of this approach in determining the anisotropic
characteristic of this kind of system was tested by trying
to reproduce the D and E values of the Fe(acac)

3
(acac"acetylacetonate) and of the Fe(dpm)

3
(dpm"2,2,6,6-tetramethyl-3,5-heptanedionate) com-
plexes as derived by simulation of EPR (43) and HF-EPR
spectra (14), respectively. The results were very promising
as, using the real geometry of the chromophore as deter-
mined from crystallographic structure and the parameter
reported in literature, a very good agreement was ob-
tained in terms of D and E for both these systems (14).

ANISOTROPY IN Mn(III) SYSTEMS

It is well known that the orbital degeneracy of the ground
state 5E

'
con"guration of MnIII in an octahedral ligand "eld

is removed by the proper Jahn}Teller distortion, giving rise
to a ground state with large zero "eld splitting anisotropy
(21). Due to these large values, only in recent years has
a relatively large amount of detailed information about the
zero "eld splitting parameters of MnIII mononuclear com-
plexes been made available by HF-EPR spectroscopy
(44}46).

A test calculation performed on the hypothesis of a tet-
ragonally distorted system, with Dq"1600 cm~1$5%
clearly evidences the much larger zero "eld splitting of this
system with respect to FeIII, giving a D value of
#4.72 cm~1 and !4.83 cm~1 for compressed and elon-
gated systems, respectively. The results of the calculation of
fourth-order terms for this ion show that the B4

4
term is

quite insensitive to the direction of the distortion, varying
only by a factor 3 and maintaining the sign, while the
B0
4

term presents a much larger variation*by a factor
102*from elongation to compression. Moreover, the com-
parison of these results with those obtained for FeIII clearly
shows that no straightforward assumption can be made on
the relative values of these terms for di!erent ions, in con-
trast to what has been established for second-order terms.

The AOM approach was satisfactorily tested for real
complexes containing MnIII, too: good reproduction of the
zero "eld splitting parameters of Mn(dbm)

3
(dbm"1,3-

diphenyl-1,3-propanedionate) as derived by HF-EPR ex-
periments were obtained considering the real structure
of this molecule. In particular, a value of the transverse
anisotropy in good agreement with those ones obtained
by the HF-EPR spectra was easily calculated by assuming
only an exponential decrease of the Dq value on the
metal}ligand distance and by considering the orthorhombic
geometry of the MnIII site in this complex (46).

POLYNUCLEAR COMPLEXES

Much less work has been performed, up to now, on
polynuclear compounds using the AOM approach. This is
mainly due to three problems: (i) an exact description of the
ground state of the cluster is often di$cult to obtain, and
then the dS

i
and dS

ij
coe$cients de"ned in Eq. [8] are not

exactly known; (ii) the determination of the ligand "eld
parameters in polynuclear systems is often complicated by
the presence of bridging atoms with misdirected valency,
whose role has long been debated (47}49); and (iii) the
number of parameters may be too large to get a meaningful
result.

Nevertheless, we have recently obtained some qualitat-
ively interesting results on the single-molecule-magnet
Fe

4
(OCH

3
)
6
(DPM)

6
, hereafter Fe4 (Fig. 2) (14). This rela-

tively simple cluster has an S"5 ground state arising from
the antiferromagnetic coupling of the central FeIII with the
three external ones. The projection coe$cients cS

i
, dS

i
, and

dS
ij

were calculated assuming a coupling scheme in which the
three external iron ions are ferromagnetically coupled to-
gether and the resulting intermediate spin (S

233
) is antifer-

romagnetically coupled to the central one (S
1
) to give the

resultant S"5. Using the crystal structure position of the



FIG. 2. The structure of the Fe4 cluster. The arrows indicate the spin
structure arising from the antiferromagnetic coupling of the central iron
with the external ones. The C

2
symmetry axis passes through Fe1 and Fe2.

FIG. 3. A picture of Mn12. The arrow evidences the MnIII whose single
ion ZFS is relevant to the determination of the cluster anisotropy.
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di!erent ligands for each of the iron centers we were able to
get the right sign of the global calculated anisotropy. How-
ever the quantitative comparison with the experimental
results showed that the calculated value accounted only for
30% of its magnitude. Moreover, a single-crystal HF-EPR
analysis has recently shown the calculated direction of the
easy axis to be very near to the real one (50). These experi-
ments have shown that fourth-order terms are absolutely
necessary to account for a meaningful description of the
anisotropy of the system. Unfortunately, as no simple rela-
tions between local and cluster fourth-order terms can be
derived for this system, the calculated single-ion fourth-
order terms cannot be compared with the experimental
data.

To get deeper insights into the anisotropy of the FeIII
cluster, further calculations on a GaIII doped sample (51) are
currently in progress.

Mn12

An estimation of the contribution of single-ion anisot-
ropy up to fourth-order terms in the ground state of
Mn12*whose structure is sketched in Fig. 3*was "rst
reported by Villain et al. (52) on the basis of two di!erent
coupling schemes. No quantitative calculation of the spin
levels is possible in Mn12 due to the exceedingly high
number of states. It is however possible to make a guess of
the prevailing nature of the ground state by choosing appro-
priate ways of coupling the individual spins to give the total
spin S. In the "rst suggested scheme (Fig. 4a) the eight MnIII

of the external ring were ferromagnetically coupled to give
an intermediate spin S@"16 and this was subsequently
coupled to the intermediate spin S@@"6 resulting from the
ferromagnetic coupling of the four MnIV, to yield the total
S"10 state (Fig. 4b). In the second coupling scheme,
the four MnIII, which are bridged by two oxide ions to
one MnIV, are antiferromagnetically coupled to the latter
(Fig. 5a) to yield four intermediate spins S@"1

2
. The idea

here is that the corresponding coupling constant must be
very large. The S@"1

2
intermediate spins are then coupled

ferromagnetically to the remaining four MnIII to give a res-
ultant spin of S"10 (Fig. 5b).

The two coupling schemes correspond to di!erent wave
functions; therefore the relative contributions of the indi-
vidual spins to the ground state are di!erent from each
other: this means that the corresponding cS

i
, dS

i
, and dS

ij
values are di!erent in the two cases. In particular for the
scheme depicted in Fig. 5 the intermediate spins are S@"1

2
,

and then they do not give any contribution to the zero "eld
splitting of the ground state. In such a way only the four
MnIII, which are not coupled to give the intermediate spin S@,
contribute to the zero "eld splitting of the cluster. These are
the ones bound by two k-oxo bridged oxygens, an apical
water molecule, and three acetates, of which two are in the
equatorial plane and one is apical: one of these sites is
evidenced by an arrow in Fig. 3. On the other hand in the
scheme depicted in Fig. 4 all the MnIII spins contribute to
the zero "eld splitting of the ground state.

After calculation of the dS
i

corresponding to the coupling
de"ned by Fig. 5 using spin-projection techniques the
axial second-order term of the single-ion anisotropy (D in
Eq. [3]) was predicted to be about !3.3 cm~1: this is



FIG. 4. (a) The eight external MnIII ions are ferromagnetically coupled
(continuous line) to yield an intermediate spin S@"16; the four MnIV are
ferromagnetically coupled (dotted line) to give the intermediate spin
S@@"6. (b) The two intermediate spins are antiferromagnetically coupled to
give the total spin S"10.

FIG. 5. (a) The spins of the four MnIV and of four of the external MnIII

ion are antiferromagnetically coupled to yield the four intermediate spins
S@"1

2
. (b) The four intermediate spins are ferromagnetically coupled to the

four remaining MnIII to give the total spin S"10. In this coupling scheme
only the latter MnIII are contributing to the zero "eld splitting of the
ground spin state of the cluster.
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a reasonable value on the basis of the literature data con-
cerning the zero dield splitting of MnIII. With the same
procedure the absolute values of the single-ion fourth-order
terms were estimated to be about 1/1000 of the cluster
fourth-order terms, crucial in determining the tunneling
process (52).

Given the widespread interest toward this molecule
(12, 53}60), we attempted a sample calculation using the
above-mentioned AOM-based program. For the sake of
simplicity we assumed an orthorhombic geometry for the
MnIII site, thus neglecting the angular distortion. While the
ligand "eld parameters concerning acetate and water were
easily found in literature (61), we still had the problem of
"nding a good set of parameters for the two k-oxo groups.
We tackled this problem looking for a set of ligand-"eld
parameters that could reproduce the D value of MnIII-doped
rutile. The value of D"!3.4 cm~1 reported in the litera-
ture (62) for this system was satisfactorily reproduced as-
suming a small tetragonal elongation, with
Dq"1560$10 cm~1 and a ratio 2en/ep"0.34. The Racah
parameters B and C and the spin}orbit coupling coe$cient
f were assumed to be that of the free ion, while a small
degree of covalence was accounted for by the orbital reduc-
tion factor, k, set to 0.75.

The parameter set reported in Table 3 was then employed
for the MnIII in Mn12; this yielded D"!3.2(7) cm~1,
B0
4
"!3.3]10~6 cm~1, and B4

4
"2.2]10~3 cm~1. This

approach then results in a good reproduction of the second-
order parameters, while some more uncertainties are shown
for fourth-order parameters. Indeed, on the basis of
the HF-EPR results, the value of the cluster parameters



TABLE 3
Parameters for the Calculation of Zero Field Splitting

Parameters of MnIII in Mn12

Donor atom Ligand-"eld parameters

O1(k-oxo) Dq"1570 cm~1

2en/ep"0.34
O2(k-oxo) Dq"1570 cm~1

2en/ep"0.34
O4(basal acetate) Dq"2030 cm~1

2en/ep"0.34
O5(basal acetate) Dq"2030 cm~1

2en/ep"0.34
O3(apical water) Dq"1200 cm~1

2en/ep"0.34
O6(apical acetate) Dq"1700 cm~1

2en/ep"0.34

Note. k (orbital reduction factor)"0.75, f"315 cm~1, B"1140 cm~1,
C"3675 cm~1. Further details on calculations are reported in the text.
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were determined to be D"!0.46 cm~1 B0
4
"!2.2]

10~5 cm~1, B4
4
"$4]10~5 cm!1. Thus one would ex-

pect values on the order of 10~2 cm~1 for the single-ion
values of B0

4
and B4

4
. The observed underestimation of the

calculated absolute values of fourth-order terms with re-
spect to the expected ones may be explained on the basis of
the approximation done in the derivation of ligand "eld
parameters and in the strong simpli"cation of the distortion
of the coordination sphere of MnIII. While this level of
approximation seems to be quite good for derivation of
second-order parameter, it only works at a qualitative level
for higher order terms; for these last ones the calculated sign
is correct but their absolute value is not.

CONCLUSIONS

Controlling the magnetic anisotropy is of fundamental
importance in molecular magnetism, because the bulk prop-
erties of the materials dramatically depend on it. The under-
standing of the conditions determining the magnetic
anisotropy however is very complex, depending on the
nature of the individual magnetic building blocks, and on
their relative arrangements. We feel that simple ligand "eld
models, which parameterize the energy levels of individual
building blocks, can contribute in "rst-order approximation
to help "nd the appropriate metal ions and coordination
geometries which can produce the expected magnetic an-
isotropy.
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